A chatbot powered by Retrieval-Augmented Generation (RAG) using LangChain and Groq.
This project demonstrates how Retrieval-Augmented Generation (RAG) can be used to create a chatbot that retrieves relevant information from documents, remembers conversations, and responds naturally. It integrates LangChain, ChromaDB, and Groq for efficient document search and fast inference.
all-MiniLM-L6-v2
) to search the vector database.āāā src/ # main chatbot code
āāā data/ # text documents for knowledge base
āāā chroma_db/ # vector database
āāā requirements.txt
āāā .env.example # environment variables
āāā README.md
# 1. Clone the repository git clone https://github.com/hasabirforever/rag-chatbot.git cd rag-chatbot # 2. Create virtual environment python -m venv venv source venv/bin/activate # Mac/Linux venv\Scripts\activate # Windows # 3. Install dependencies pip install -r requirements.txt # 4. Add API keys cp .env.example .env # Edit with your GROQ_API_KEY
data/
.