This project is a Retrieval-Augmented Generation (RAG) Assistant built with Streamlit and powered by Google Gemini.
It allows users to query documents and receive context-aware answers, making it useful for research assistance, document analysis, and learning support.
Clone the repository:
git clone https://github.com/ashuuu2409/rag-assistant.git cd rag-assistant
Create a virtual environment:
python -m venv venv venv\Scripts\activate # Windows source venv/bin/activate # Mac/Linux
Install dependencies:
pip install -r requirements.txt
Set your API key:
setx GOOGLE_API_KEY "your_api_key_here" # Windows export GOOGLE_API_KEY="your_api_key_here" # Mac/Linux
Run the Streamlit app:
streamlit run project1.py
This will launch a web interface where you can upload a document and start asking questions.
rag-assistant/
āāā project1.py # Main RAG + Streamlit code
āāā requirements.txt # Dependencies
āāā README.md # Documentation
āāā LICENSE # License file
This project is licensed under the MIT License.
Ā© 2025 Ashutosh Rajpal