Short intro:
Ye project ek multi-agent AI system hai jo accounting ke liye design kiya gaya hai.
Role of agents:
Researcher Agent ā DB + local files scan karta hai aur notes banata hai
Planner Agent ā Sub-questions aur plan generate karta hai
Summarizer Agent ā Final concise structured answer banata hai
Orchestration:
Custom orchestration via run_graph() (LangGraph style), Node.js + Python integrated
Architecture Flow:
User (POST /run-task via Node server)
ā
Python main.py
ā
Orchestrator (run_graph)
ā
[Researcher] ā Tools (FileReader, LocalLLM, DB adapter, Calculator)
ā
[Planner] ā Breaks into steps
ā
[Summarizer] ā Creates final report
ā
Return JSON / Console Output
Agents:
Researcher ā Context collection (DB, files, LLM)
Planner ā Logical breakdown
Summarizer ā Evidence-based final summary
Tools:
Calculator ā Basic arithmetic
FileReader ā Local text/document scanning
LocalLLM (Ollama) ā Offline AI model (no API)
DB Adapters (switchable):
JSON (default)
SQLite
Postgres (stub, extendable)
š¹ 3. Setup Instructions
Requirements:
Node.js (ā„18)
Python (3.10 recommended, with venv)
Ollama
installed with model (e.g., llama3.2:3b)
Installation Steps (Windows-friendly):
git clone https://github.com/trivedijigneshkumar11192/readytensor-multi_agent_module2-Public-.git
cd readytensor-multi_agent_module2-Public-
npm install
py -3.10 -m venv venv
venv\Scripts\activate
pip install -r python/requirements.txt
npm start
Test Command:
curl -X POST http://localhost:8080/run-task -H "Content-Type: application/json" -d "{"task":"AI in accounting overview"}"
š¹ 4. Sample Input/Output
Input:
Task: AI in accounting overview
Output:
{
"ok": true,
"output": "Task: AI in accounting overview\n\n== Plan == ...\n== Evidence == ..."
}
š¹ 5. Best Practices + Notes
Secure .env files (OLLAMA_PATH, DB configs) ā add .env_example
No external APIs ā fully offline, reproducible
Modular: new agents or tools can be plugged in easily
Covers ReadyTensor Module 2 requirements (ā„3 agents, ā„3 tools, orchestration, DB adapters)