
MarketMuse is a sophisticated Retrieval-Augmented Generation (RAG) system specifically engineered for content strategy and marketing professionals. This enterprise-ready solution combines advanced query processing, intelligent document chunking, and multi-layer security protocols to deliver accurate, document-based insights while preventing system manipulation attacks.
# Intelligent query understanding with domain context query_analysis = { 'complexity': assess_query_complexity(user_query), 'intent': detect_query_intent(user_query), # informational/analytical/comparative 'domain': identify_content_strategy_context(user_query), 'expanded_queries': generate_domain_specific_variants(user_query) }
User Interface (Streamlit)
ā
Advanced Query Processor āā Conversational Memory
ā
Security Filter Layer ( threat patterns)
ā
Multi-level Document Chunking ā Vector Store (ChromaDB)
ā
RAG Pipeline (LangChain) ā LLM (Groq LPU)
ā
Evaluation Metrics ā Secure Response Generation
class SecurityProtocol: def validate_query(self, query: str) -> dict: # Comprehensive threat detection if self._detect_prompt_extraction(query): return { 'is_secure': False, 'threat_type': 'prompt_extraction', 'action': 'block_with_hardcoded_response' } return {'is_secure': True, 'action': 'process'}
# Domain-specific test cases TEST_CASES = [ { "query": "What is our content strategy for increasing organic traffic?", "expected_documents": ["seo_strategy.pdf", "content_plan.docx"], "domain": "seo_optimization", "difficulty": "medium" } ]
# Clone repository git clone https://github.com/Migbar-Abera-Shibru/marketmuse-rag-assistant.git cd marketmuse-rag-assistant # Install dependencies pip install -r requirements.txt # Configure environment echo "GROQ_API_KEY=your_key_here" > .env # Launch application streamlit run app.py
marketmuse-rag-assistant/
āāā app.py # Main Streamlit application
āāā rag_chain.py # Advanced RAG with security
āāā evaluation.py # Comprehensive testing framework
āāā document_processor.py # Intelligent chunking strategies
āāā config.py # Configuration management
āāā requirements.txt # Python dependencies
āāā LICENSE # MIT License
āāā README.md # Detailed documentation
Lead Developer
AberaGitHub Repository: https://github.com/Migbar-Abera-Shibru/marketmuse-rag-assistant
Key Files:
rag_chain.py - Core RAG implementation with securityevaluation.py - Comprehensive testing frameworkdocument_processor.py - Advanced chunking strategiesapp.py - Streamlit user interfaceRAG-Systems AI-Security Content-Strategy Document-Analysis Enterprise-AI LangChain Groq-API Vector-Databases Prompt-Engineering Retrieval-Evaluation Domain-Specialization Ethical-AI Knowledge-Management Marketing-Analytics SEO-Optimization Business-Intelligence Machine-Learning Natural-Language-Processing
MarketMuse represents a significant step toward secure, domain-specialized AI systems that understand business context while maintaining enterprise-grade security standards. We welcome collaboration and feedback from the community to advance this important work.
Ready to explore? Access the code and start analyzing your content strategy documents today!