๐ Production-Ready Multi-Agent AI System for Intelligent Repository Analysis & Automation
A fully modular, production-ready multi-agent AI system designed to intelligently analyze GitHub repositories, extract metadata, summarize content, and improve documentation.
This project represents the final capstone (Project 3) of the Agentic AI Developer Certification and is an upgraded, production-grade version of the previous Project 2: Multi-Agent System.
๐ About This Project
This system transforms a functional prototype into a reliable, secure, and user-ready AI application, featuring:
๐ง Multi-agent collaboration
๐ก๏ธ Guardrails & safety validation
๐งช Comprehensive testing (unit + integration + E2E)
๐ฅ๏ธ Streamlit user interface
๐ง Robust tooling for repo parsing & metadata extraction
๐ Production-readiness enhancements
๐งฉ System Architecture Overview
The system uses a network of coordinated AI agents, each specializing in a specific task:
๐ค Agents
Agent Role
๐ Tools
Tool Function
๐ฅ๏ธ User Interface
A lightweight Streamlit application enables:
๐ Folder Structure
multi-agent-system/
โ
โโโ agents/
โ โโโ analyzer_agent.py
โ โโโ metadata_agent.py
โ โโโ improver_agent.py
โ
โโโ tools/
โ โโโ repo_reader.py
โ โโโ web_search_tool.py
โ
โโโ utils/
โ โโโ guardrails.py
โ โโโ logger.py
โ
โโโ ui/
โ โโโ app.py
โ
โโโ tests/
โ โโโ test_analyzer_agent.py
โ โโโ test_metadata_agent.py
โ โโโ test_improver_agent.py
โ โโโ test_end_to_end.py
โ
โโโ main.py
๐ง How It Works
The system follows a deterministic, multi-agent orchestration pipeline:
1๏ธโฃ Repo Reader collects repository content
2๏ธโฃ AnalyzerAgent generates a structured summary
3๏ธโฃ MetadataAgent extracts tech stack & core metadata
4๏ธโฃ ImproverAgent proposes documentation & quality improvements
5๏ธโฃ All outputs merge in the orchestrator
6๏ธโฃ Final results displayed in Streamlit UI
๐งฌ Architecture Diagram
flowchart TD
A[User Input
Repository Path] --> B[Repo Reader]
B --> C[AnalyzerAgent]
B --> D[MetadataAgent]
B --> E[ImproverAgent]
C --> F[Summary Output]
D --> G[Metadata Output]
E --> H[Improvement Suggestions]
F --> I[Workflow Orchestrator]
G --> I
H --> I
I --> J[Streamlit UI
Final JSON Output]
๐ก Safety, Guardrails & Fallbacks
To ensure a production-grade experience, the system includes:
๐งช Testing & Reliability
The testing suite ensures functional accuracy and system stability:
Run all tests:
pytest -v
๐ฅ๏ธ UI: Streamlit Application
Launch the UI:
cd ui
streamlit run app.py
The interface displays:
โ๏ธ Installation
1๏ธโฃ Clone the repository
git clone https://github.com/pranteshdahikar/multi-agent-system
cd multi-agent-system

2๏ธโฃ Install dependencies
pip install -r requirements.txt
3๏ธโฃ Run the analyzer workflow
python main.py
๐ค Example Output
{
"analysis_summary": "This repository implements a production-ready multi-agent system...",
"metadata": {
"tech_stack": ["Python", "Streamlit", "LangChain"],
"project_purpose": "Automated repository analysis & documentation enhancement"
},
"improvements": [
"Add architecture diagram",
"Add contribution guidelines",
"Improve README structure"
]
}
๐ Related GitHub Projects
These projects support this certification journey:
Project Links:
Project โ RAG Assistant https://github.com/pranteshdahikar/rag-assistant
Project โ Multi-Agent System https://github.com/pranteshdahikar/multi-agent-system