Author: Chidambara Raju G
Version: 1.0
Project Repository: Capital Compass
Capital Compass is an agentic AI application that automates the end-to-end workflow of investment research.
It leverages a multi-agent LangGraph workflow to fetch financial data, analyze news sentiment, perform web-based analyst research, and synthesize these inputs into a decisive investment report.
By orchestrating specialized agentsโfinancial, sentiment, and web research analystsโalong with a critique and synthesis layer, Capital Compass generates professional-grade reports with clear recommendations for investors.
This project demonstrates the practical use of agentic AI in financial services, combining structured data APIs, LLM-driven analysis, and workflow orchestration to address the complexity and subjectivity inherent in investment decision-making.
Investment research is traditionally:
The challenge was to design an AI-driven system that:
Capital Compass solves this problem using an agentic multi-step workflow powered by LangGraph.
%%{init: { "theme": "dark", "themeVariables": { "primaryColor": "#0b1220", "primaryTextColor": "#E5E7EB", "primaryBorderColor": "#93C5FD", "lineColor": "#93C5FD", "tertiaryColor": "#111827", "fontSize": "12px", /* Slightly smaller text */ "padding": 12, /* More space inside nodes */ "nodeSpacing": 60, /* Wider horizontal spacing */ "rankSpacing": 60, /* Wider vertical spacing */ "fontFamily": "Inter, ui-sans-serif, system-ui, -apple-system, Segoe UI, Roboto" } }}%% graph TD A[Start:<br/>User Enters Ticker] --> B[Fetch:<br/>Financial Overview] A --> C[Fetch:<br/>News & Sentiment] A --> I[Fetch:<br/>Web Search] B --> D{Analyze:<br/>Financials} C --> E{Analyze:<br/>Sentiment} I --> J{Summarize:<br/>Web Research} D --> F[Balanced Review:<br/>Risk & Opportunity] E --> F J --> F F --> G[Final Synthesis:<br/>Generate Report] G --> H[End:<br/>Display Report] %% Dark-friendly styles classDef fetch fill:#0F172A,stroke:#818CF8,color:#E5E7EB,stroke-width:2px classDef websearch fill:#1E1B4B,stroke:#A5B4FC,color:#E0E7FF,stroke-width:2px classDef analyze fill:#111827,stroke:#60A5FA,color:#E5E7EB,stroke-width:2px classDef critic fill:#1F0A0A,stroke:#FCA5A5,color:#FEE2E2,stroke-width:2px classDef final fill:#052E2B,stroke:#34D399,color:#D1FAE5,stroke-width:2px classDef default fill:#0B1220,stroke:#93C5FD,color:#E5E7EB,stroke-width:1.5px class B,C fetch class I websearch class J analyze class D,E analyze class F critic class G final
The core of Capital Compass is a stateful graph built with LangGraph. This orchestrates a sophisticated workflow between specialized AI agents to ensure a robust and nuanced analysis.
The process begins by simultaneously gathering three distinct types of information:
The raw data is then processed in parallel by three specialist agents:
All three analyses are passed to the Risk & Opportunity Analyst.
Finally, the Senior Advisor Agent receives:
It then weighs the core opportunity against the significant risk to produce a structured, decisive investment report.
Follow these steps to get a local copy running:
Clone the repository:
git clone https://github.com/ChidambaraRaju/capital-compass cd capital-compass
Create a virtual environment:
python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate
Install dependencies:
pip install -r requirements.txt
Set up environment variables:
Create a .env
file in the project root with:
ALPHAVANTAGE_API_KEY="YOUR_ALPHA_VANTAGE_KEY" GROQ_API_KEY="YOUR_GROQ_API_KEY" TAVILY_API_KEY="YOUR_TAVILY_API_KEY"
Run the Streamlit app from the root directory:
streamlit run main.py
.
โโโ assets/
โ โโโ logo.png
โโโ capital_compass/
โ โโโ agents/
โ โ โโโ analysis_agents.py
โ โ โโโ data_fetcher.py
โ โโโ tools/
โ โ โโโ alpha_vantage_client.py
โโโ tavily_search_tool.py
โ โโโ exceptions.py
โ โโโ graph.py
โ โโโ state.py
โโโ .env
โโโ main.py
โโโ requirements.txt
Distributed under the MIT License.
Made with โค๏ธ and Python