In today's fast-paced digital world, content creation demands efficiency, quality, and accuracy. This AI-powered blog generator leverages:
👉 Live Demo
👉 GitHub Repository
from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings # Load AI research articles & store in FAISS vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings()) retrieved_docs = vectorstore.similarity_search("Latest AI breakthroughs")
from crewai import Agent, Crew researcher = Agent(role="AI Researcher", tools=[rag_tool]) writer = Agent(role="AI Writer", tools=[summarization_tool]) editor = Agent(role="AI Editor", tools=[validation_tool]) crew = Crew(agents=[researcher, writer, editor]) result = crew.kickoff(inputs={'topic': 'The Future of AI in Healthcare'})
from textblob import TextBlob from textstat import flesch_reading_ease def analyze_text(text): sentiment = TextBlob(text).sentiment.polarity readability = flesch_reading_ease(text) return sentiment, readability
📊 Example Analysis:
✅ Sentiment Score: 0.85
(positive tone)
✅ Readability Score: 65.2
(good readability)
import openai def chat_with_ai(prompt): response = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "user", "content": prompt}] ) return response["choices"][0]["message"]["content"]
import requests def post_to_linkedin(content, access_token): url = "https://api.linkedin.com/v2/ugcPosts" headers = {"Authorization": f"Bearer {access_token}", "Content-Type": "application/json"} post_data = {"content": content, "visibility": "PUBLIC"} requests.post(url, headers=headers, json=post_data)
🚀 Enhancements:
Technology | Description |
---|---|
LangChain | RAG for research-based content generation |
FAISS | Vector database for knowledge retrieval |
CrewAI | AI agent collaboration (Researcher, Writer, Editor) |
OpenAI GPT-4 Turbo | AI-powered summarization & validation |
Streamlit | Web-based UI for user interaction |
TextBlob & textstat | Sentiment & readability analysis |
LinkedIn API | Social media auto-posting |
1️⃣ User enters a blog topic in Streamlit.
2️⃣ CrewAI Multi-Agents work in sequence:
🔎 Researcher gathers insights → 📝 Writer structures the blog → ✍️ Editor polishes it.
3️⃣ Sentiment & Readability Analysis ensures quality.
4️⃣ User downloads the blog in Markdown, Word, or PDF.
5️⃣ Auto-share the blog on LinkedIn.
6️⃣ Optional: Use AI Chat Assistant for refinements.
git clone https://github.com/your-repo/ai-blog-generator.git cd ai-blog-generator
pip install -r requirements.txt
Create a .env
file and add:
SAMBANOVA_API_KEY=your_sambanova_api_key SERPER_API_KEY=your_serper_api_key OPENAI_API_KEY=your_openai_api_key LINKEDIN_ACCESS_TOKEN=your_linkedin_api_token
streamlit run app.py
📌 AI Research & Blog Writing UI
📌 Sentiment & Readability Analysis Results
📌 Social Media Auto-Sharing
✅ Multi-Language Blog Generation (NLLB-200, Mistral-7B) 🌍
✅ AI-Powered Editing for Tone & Style Refinement 🎨
✅ Twitter & Medium API Auto-Posting 📲
🚀 This AI-powered blog generator is a game-changer for content creators! It:
💡 Potential Use Cases:
💬 Want to contribute? Feel free to fork this repo & improve the AI workflow!
🔗 GitHub: your-repo-link
🔗 Demo: your-demo-link
🚀 Like this project? Give it a ⭐ on GitHub & share your thoughts in the comments! 🎉