An advanced AI-based Signature Verification System using Siamese Neural Networks to detect and verify handwritten signatures. With a clean Gradio web interface, users can simply upload two signatures to find out if they match โ perfect for banking, legal, and security use cases.
This project applies deep learning to compare two handwritten signatures and determine if they belong to the same person. It uses a Siamese CNN model trained to learn feature similarity between genuine and forged signatures.
The app provides:
best_signature_model.h5
)Component | Technology |
---|---|
Deep Learning | TensorFlow, Keras |
Model | Siamese CNN |
Web UI | Gradio |
Image Processing | OpenCV, Pillow (PIL) |
Visualization | Matplotlib |
Data Handling | NumPy, Scikit-learn |
Language | Python 3.7+ |
signature_verification.py
to your Colab session!pip install gradio tensorflow opencv-python-headless pillow numpy matplotlib scikit-learn
%run signature_verification.py
A public link will appear โ click to open the app in your browser.
git clone https://github.com/shahram8708/AI-Based-Signature-Verification-System.git cd AI-Based-Signature-Verification-System python -m venv signature_env # For Windows: signature_env\Scripts\activate # For Mac/Linux: source signature_env/bin/activate pip install -r requirements.txt python signature_verification.py
Open browser at: http://localhost:7860
AI-Based-Signature-Verification-System/
โโโ signature_verification.py # Main application file
โโโ best_signature_model.h5 # Trained model (auto-generated after training)
โโโ requirements.txt # Dependencies
โโโ demo.PNG # Demo screenshot
โโโ README.md # Documentation
โโโ signature_data/ # Signature dataset directory
โโโ genuine/ # Real signatures
โโโ forged/ # Fake signatures
Parameter | Value |
---|---|
Architecture | Siamese CNN |
Input Size | 150x150 grayscale |
Feature Dim | 128D Embeddings |
Loss Function | Binary Crossentropy |
Optimizer | Adam (lr=0.001) |
Training Epochs | Up to 30 (Early Stopping) |
Augmentation | Rotation, Scaling |
This project is licensed under the MIT License.
You are free to use, modify, and distribute it with credit to the author.
Shah Ram โ AI/ML Engineer & Deep Learning Enthusiast
Connect with me on GitHub
"The best way to predict the future is to create it." โ Peter Drucker
Built with โค๏ธ using TensorFlow & Gradio