This project is a real-time face recognition-based attendance system built using OpenCV, Haar Cascade, and KNN classifiers. It efficiently automates the attendance process by recognizing faces and storing the data in a structured format.
# Import required libraries import cv2 import numpy as np # Initialize Haar Cascade for face detection face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # Load webcam feed cap = cv2.VideoCapture(0) while True: _, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) cv2.imshow('Face Detection', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() Repository Check the full implementation on GitHub: https://github.com/krisharora7/Face-Recognition-with-Attendance-Based-system Applications Educational Institutions: Automates student attendance. Corporate Offices: Tracks employee attendance. Event Management: Simplifies participant verification. Future Scope Integration with cloud storage for scalability. Enhanced recognition using deep learning models. Support for multi-camera environments. Tags: #FaceRecognition #OpenCV #AutomatedAttendance #Python #HaarCascade #KNNClassifier #ComputerVision #AI