AI-Document-Analyzer-MVP-Example
A simplified reference project architecture for an AI-powered MVP using open-source LLMs (like Mistral-7B or Llama 2) with a modern tech stack: Web app that analyzes text documents and provides summaries + Q&A capabilities.
Project: AI Document Analyzer (MVP Example)
Tech Stack
Frontend (Next.js 14 - App Router)
Backend (Python)
AI Layer
Database
Minimal Implementation Code
export default function Home() {
async function analyzeDocument(formData: FormData) {
'use server'
const text = formData.get('text')
const res = await fetch('http://localhost:8000/analyze', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ text })
})
return await res.json()
}
return (
<button type="submit" className="bg-blue-500 text-white px-4 py-2 rounded" > Analyze </button> </form> </main> ) } Backend (FastAPI) - main.py pythonfrom fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, pipeline
import torch
app = FastAPI()
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipe = pipeline(
"text-generation",
model=model_name,
device_map="auto",
torch_dtype=torch.float16
)
llm = HuggingFacePipeline(pipeline=pipe, max_new_tokens=256)
class AnalysisRequest(BaseModel):
text: str
@app.post("/analyze")
async def analyze_document(request: AnalysisRequest):
try:
prompt = f"""
Analyze this document and provide:
1. A 3-sentence summary
2. 3 key insights
3. Answer: What is the main subject?
Document: {request.text}
"""
response = llm(prompt)
return {"analysis": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
Key Components Explanation
Local Model Setup (Using HuggingFace):
AI Processing Flow:
- mermaid
- flowchart LR
A[User Input] --> B[Text Preprocessing]
B --> C[Prompt Engineering]
C --> D[LLM Inference]
D --> E[Result Post-processing]
E --> F[API Response]
Performance Considerations:
MVP Evolution Path
Initial Version (Week 1)
V1.1 (Week 2)
V1.2 (Week 3)
To Get Started:
Install requirements: bash pip install fastapi uvicorn langchain transformers torch npm install next react react-dom
Run backend: bash uvicorn main
--reloadRun frontend: bash cd frontend && npm run dev
This architecture gives a foundation for AI data processing while maintaining flexibility. We can swap components (... use OpenAI API instead of local models) by modifying just the AI service layer.
There are no models linked
There are no models linked