AI-Document-Analyzer-MVP-Example
A simplified reference project architecture for an AI-powered MVP using open-source LLMs (like Mistral-7B or Llama 2) with a modern tech stack: Web app that analyzes text documents and provides summaries + Q&A capabilities.
Project: AI Document Analyzer (MVP Example)
Tech Stack
Frontend (Next.js 14 - App Router)
Backend (Python)
AI Layer
Database
Minimal Implementation Code
export default function Home() {
async function analyzeDocument(formData: FormData) {
'use server'
const text = formData.get('text')
const res = await fetch('http://localhost:8000/analyze', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ text })
})
return await res.json()
}
return (
<button type="submit" className="bg-blue-500 text-white px-4 py-2 rounded" > Analyze </button> </form> </main> ) } Backend (FastAPI) - main.py pythonfrom fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, pipeline
import torch
app = FastAPI()
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipe = pipeline(
"text-generation",
model=model_name,
device_map="auto",
torch_dtype=torch.float16
)
llm = HuggingFacePipeline(pipeline=pipe, max_new_tokens=256)
class AnalysisRequest(BaseModel):
text: str
@app.post("/analyze")
async def analyze_document(request: AnalysisRequest):
try:
prompt = f"""
Analyze this document and provide:
1. A 3-sentence summary
2. 3 key insights
3. Answer: What is the main subject?
Document: {request.text}
"""
response = llm(prompt)
return {"analysis": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
Key Components Explanation
Local Model Setup (Using HuggingFace):
AI Processing Flow:
- mermaid
- flowchart LR
A[User Input] --> B[Text Preprocessing]
B --> C[Prompt Engineering]
C --> D[LLM Inference]
D --> E[Result Post-processing]
E --> F[API Response]
Performance Considerations:
MVP Evolution Path
Initial Version (Week 1)
V1.1 (Week 2)
V1.2 (Week 3)
To Get Started:
Install requirements: bash pip install fastapi uvicorn langchain transformers torch npm install next react react-dom
Run backend: bash uvicorn main
--reloadRun frontend: bash cd frontend && npm run dev
This architecture gives a foundation for AI data processing while maintaining flexibility. We can swap components (... use OpenAI API instead of local models) by modifying just the AI service layer.