The Adaptive Classifier project introduces a novel approach to optimizing Large Language Model (LLM) interactions through continuous learning and dynamic adaptation. This system addresses two critical challenges in LLM deployment:
Repository: github.com/codelion/adaptive-classifier
The system combines three key components that work together to enable adaptive decision-making:
The system automatically categorizes queries into temperature ranges:
Query Analysis:
Temperature Selection:
Performance Monitoring:
The system implements a two-tier routing strategy:
High-Complexity Route:
Low-Complexity Route:
Performance metrics from arena-hard-auto-v0.1 dataset (500 queries):
Metric | Without Adaptation | With Adaptation | Impact |
---|---|---|---|
High Model Routes | 22.6% | 19.6% | 0.87x |
Low Model Routes | 77.4% | 80.4% | 1.04x |
High Success Rate | 40.71% | 29.59% | 0.73x |
Low Success Rate | 16.54% | 20.15% | 1.22x |
Overall Success | 22.00% | 22.00% | 1.00x |
Cost Savings | 25.60% | 32.40% | 1.27x |
class AdaptiveClassifier: def __init__(self, model_name: str): self.model = AutoModel.from_pretrained(model_name) self.memory = PrototypeMemory(self.model.config.hidden_size) self.adaptive_head = AdaptiveHead( input_dim=self.model.config.hidden_size, num_classes=0 # Dynamically updated ) def add_examples(self, texts: List[str], labels: List[str]): embeddings = self._get_embeddings(texts) for text, embedding, label in zip(texts, embeddings, labels): self.memory.add_example(Example(text, label, embedding)) self._update_neural_layer() def predict(self, text: str) -> List[Tuple[str, float]]: embedding = self._get_embeddings([text])[0] proto_preds = self.memory.get_nearest_prototypes(embedding) neural_preds = self.adaptive_head(embedding) return self._combine_predictions(proto_preds, neural_preds)
class PrototypeMemory: def __init__(self, embedding_dim: int): self.examples = defaultdict(list) self.prototypes = {} self.index = faiss.IndexFlatL2(embedding_dim) def add_example(self, example: Example): self.examples[example.label].append(example) self._update_prototype(example.label) self._maintain_index() def get_nearest_prototypes(self, query: torch.Tensor) -> List[Tuple[str, float]]: distances, indices = self.index.search(query.unsqueeze(0).numpy(), k=5) return [(self.index_to_label[idx], self._compute_similarity(dist)) for dist, idx in zip(distances[0], indices[0])]
This project advances the field of agentic AI in several key ways:
Autonomous Decision Making: The system independently learns to optimize LLM interactions without human intervention.
Adaptive Behavior: Continuous learning allows the agent to improve its decision-making based on experience.
Resource Optimization: Intelligent routing and configuration management lead to more efficient resource utilization.
Scalable Architecture: The system can handle new use cases and models without architectural changes.
The implementation demonstrates significant business value:
The Adaptive Classifier project demonstrates the potential of agentic AI in optimizing LLM operations. Through continuous learning and intelligent routing, it achieves significant cost savings while maintaining response quality. The system's ability to adapt to new patterns and automatically optimize configurations makes it a valuable tool for organizations deploying LLM technologies at scale.
There are no datasets linked
There are no datasets linked